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Abstract— In this article, the competing dual-band Polar 

Volterra series is used to model a nonlinear power 

amplifier (PA). The series was developed in Matlab 

software, with ten truncations separating the 

manipulation of the complex inputs of the model. The new 

series presented a reduced number of coefficients and an 

ability to model the PA with greater accuracy when 

compared to the competing dual-band polar Volterra 

series model of four truncations presented in a previous 

article. 

I. INTRODUCTION 

      Wireless technology is increasingly being ordered in 

the present time, and as the use of this technology is 

increasing, its modernization is necessary. In order to act 

productively, it is necessary to supply the high data 

transfer rate in the frequency spectrum without the signal 

interfering with the adjacent channel, avoiding distortions 

in the signal. The power amplifier (PA) is a device used 

for wireless signal amplification that must present linearity 

and efficiency. For the highest efficiency to be realized, 

the PA must act in the nonlinear region where temporal 

characteristics of the system in which it was applied are 

considered. The nonlinearity region of the PA ends up 

causing distortions in the signal that will be amplified and 

interference in adjacent channels, thus preventing the 

performance of these channels from being efficient. Thus, 

it is necessary that the PA is linearized through its 

behavioral modeling. The analysis of power amplifiers 

becomes highly complex and so simplification is required 

[1].  

      The Volterra series is a mathematical equation used 

with several simplifications to represent the nonlinearity 

of a PA, both for single band and for dual-band, through 

kernels and memory depth. As the polynomial order and 

memory depth increase, the number of coefficients 

generated by the series grows exponentially. The dual-
band polar Volterra series separately manipulates the 

amplitude and phase components of the input signals with 

greater behavioral complexity to obtain a high accuracy of 

the actual PA model. 

      In this work, the polar Volterra Series with ten 

truncations will be studied, comparing it with the polar 

Volterra Series with four truncations [2]. The model is 

expected to accurately reproduce any amplifier for any 

frequency and bandwidth parameters. The accuracy of the 

model can be measured and calculated using the 

normalized mean square error (NMSE). Due to the 

increase in the number of truncations it is expected to 

obtain more samples and reduced NMSE values for a 

smaller number of coefficients, without affecting the 

accuracy of the model. 

II. VOLTERRA SERIES 

      Behavioral modeling will be used to reproduce the 

actual behaviors of an amplifier in a system. Thus, it will 

be possible to simulate the nonlinearity and memory 

effects of a PA [3]. The model uses the Volterra series 

described by 
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      Where P0 is the polynomial order truncation and M is 

the memory length. The conjugate complexes of  x1 and  x2 

are represented by 
*

1x and
*

2x , 
1 2 3 4 1 2, , , , , ,... PP P P P q q qh   are the 

Kernels of the Volterra series. 

      For the performance of both Volterra models to be 

compared, simulation data of a CMOS PA circuit in class 

AB were used, where the sampling frequency was 120 

MHz, with 3.000 samples for extraction and 2.000 for 

validation. Simulated in cadence specter RF software 

features a 2.4 GHz carrier modulated by a WiFi envelope 

with 20 MHz bandwidth, based on IEEE 802.11n, and the 

second carrier is placed at 3.5 GHz and modulated by an 

LTE envelope signal with a bandwidth of 20 MHz [2]. 

III. POLAR DUAL-BAND VOLTERRA SERIES 

      In the behavior modeling of dual-band PAs, the PA 

depends on two inputs x1 and x2, and two outputs y1 and y2. 

Thus, in the dual-band Volterra series, each output is a 

polynomial function with the memory of both inputs, 

considering then the interaction between the two input 

signals. In the polar series, the amplitude and the complex 

exponential of the phase are worked separately. 

 

A. Four Truncation polar Volterra series 

      In the Polar Volterra series of competing dual-band of 

four truncation dual-band series approached by (1). the 

complex band 1 output at present time, y1 (n), is calculated 

from: 
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      Where a1 and a2 are the respective amplitudes of inputs 

x1 and x2, θ1 and θ2 are the respective phase components of 

inputs x1 and x2.The positive number of phases of θ1 is 

equal to the negative number of phases plus one, while the 
positive number of phases of θ2 is equal to the negative 

number of phases of θ2. In this four truncations model, P1 

and M1 were associated with amplitudes a1 and a2 and P2 

and M2 were associated with phases θ1 and θ2. 

      The four truncations polar Volterra series despite 

obtaining adequate NMSE values for both WiFi and LTE 

bands with P1=5, M1 =1, P2=1 and M2=1, showed a super 

fit when trying to represent memory effects, with values 

below of -40 dB during the parameter extraction and 

greater than -18 dB for data not used in the extraction [2]. 

 

B. Ten truncation polar Volterra series 

      In this article, the ten truncation dual-band polar 

Volterra series is developed from the four truncation dual-

band polar Volterra series. Replicating the series (2) four 

times, adjusting the values of truncation factors in its 

minimum values and through simplifications, in this new 

series the complex band 1 output at present time, y1 (n), is 

calculated from: 
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      Similar to the terms of (2), a1 and a2 are the respective 

amplitudes of inputs x1 and x2, θ1 and θ2 are the respective 

phase components of inputs x1 and x2. The positive number 

of phases of θ1 is equal to the negative number of phases 

plus one, while the positive number of phases of θ2 is equal 

to the negative number of phases of θ2. In this ten 

truncations model, P11, P12, P13, P14 and M2, M3, M4 were 

associated with amplitudes a1 and a2 and P24 and L3, L4 was 

associated with phases θ1 and θ2. 

      As the number of truncations in the series increases, 

there is a greater amount of polynomials and memory 

duration. Thus, the Volterra series generates many 

coefficients that make the computational effort very large. 

To reduce this number of coefficients and maintain the 

accuracy of the model, the complex inputs of the amplifier 

are manipulated. This manipulation consists of 

determining independent truncation values, thus obtaining 

four divisions in the model, with six truncations adjusted. 

Truncation values can be selected independently, but the 

evaluation of each candidate is time-consuming. 

Therefore, to reduce the number of candidates to be 

evaluated the values are adjusted in their minimum values 

established by the following conditions: for polynomials 

that model the nonlinearity of amplitude P11 >= P12 >= P13 >= 

P14, for memories that model amplitude memory M2 >= M3 

>= M4, and for memories that model phase memory L3>= L4 

[4]. The new model has ten truncation factors to be 

determined, and conditions must be met to reduce the 

number of parameters. For each subdivision, nonlinearity 

functions of amplitude, phase linearity, without or with 

amplitude and phase memories were assumed  and  phase 

nonlinearity. 

      The first division does not reproduce the effects with 

memory, the output being a function of the current input. 

A truncation factor is determined, which is the polynomial 

order of amplitude P11.  

      The second division has two truncation factors to be 

determined, the polynomial order of amplitude P12 and the 

memory duration of the M2 amplitude and is capable of 

reproducing memory effects related to previous inputs. 

      The third division has three truncation factors to be 

determined, the polynomial order of amplitude P13, the 

length of amplitude memory M3 and the length of phase 

memory L3. It can consider both amplitude and phase 

memory effects. 

      The fourth division has four truncation factors to be 

determined, the polynomial order of amplitude P14, the 

memory length of amplitude M4, the polynomial order of 

phase P24 and the length of the L4 phase memory. The 

complex instantaneous output is a non-linear function of 

the input amplitudes and phases of instantaneous and 

previous inputs. 

IV. SIMULATION RESULTS 

      The results were obtained in Matlab software using 

double precision floating point arithmetic and using the 

modeling data described in Section II. Comparing the 

polar Volterra series of 10 truncations with the Volterra 

series of 4 truncations, it was possible to verify the 

efficiency of this new series using many more truncation 

combinations. The old model contains four truncations, 

were P1 ranging from 1 to 5, M1 from 0 to 2, P2 from 1 to 

3 and M2 from 0 to 2. The new model contains 10 

truncations. The amplitudes and phases vary as follows 
P11, P12, P13, P14 and P24 vary from 1 to 5 and M2, M3, M4, 

L3 and L4 vary from 0 to 2.  

      On average, the NMSE value for the four truncation 

model was -24.16 dB for the WiFi band and -29.07 dB for 

the LTE band, for the new model the average NMSE value 

was -32.05 dB for the WiFi band and -31.70 dB for the 

LTE band. The worst values obtained for each model of 

the WiFi band output were 33.21 dB for the four 

truncations and -20.68 dB for the new model. For the LTE 

band, the worst results were -17.62 dB for the four 

truncation model and -27.40 dB for the new model. In 

Table 1 it is possible to observe the best NMSE values 

obtained for both models. 

 

TABLE 1. BEST NMSE VALUES 

Models WiFi (dB) LTE (dB) 

New model -40.37 -39.70 

Old model -37.61 -37.54 

 

      From Table 1, in the best NMSE values were observed 

improvements of 2.8 dB for the WiFi band and 2.2 dB for 

the LTE band. For the old model, the best result was 

obtained with P1= 5, M1= 1, P2= 1 and M2 = 1 for the WiFi 

and LTE bands, considering the memory effects in the 

system. For both bands a higher value was adopted for the 

polynomial order of amplitude, while the same value is 

used for amplitude and phase memory lengths. For the new 

model, the best result was obtained with P11=5, P12=2, 

P13=1, P14=1, P24=1, M2=2, M3=2, M4=2, L3=2, L4=2, for 

the WiFi band and the best result was obtained with P11=5, 

P12=2, P13=1, P14=1, P24=1, M2=2, M3=0, M4=0, L3=1, 

L4=1, for the LTE band. 

 

 
Fig. 1. NMSE values as a function of the number of 

coefficients for the WiFi band. 



 

 
Fig. 2. NMSE values as a function of the number of 

coefficients for the LTE band. 

      In Figures 1 and 2 it is possible to affirm that even with 

the reduction in the number of coefficients generated by 

the new series, there was no deterioration in the modeling 

accuracy.  The new model presented a more accurate and 

efficient curve in the range of NMSE values with 

acceptable accuracies, above ten coefficients, than the 

curve obtained for the old model, so the new model was 

able to represent the real amplifier more efficiently. 

V. CONCLUSIONS 

      The polar Volterra polar series of dual-band competitor 

of ten independent truncations presents a complexity 

similar to the polar series of four truncations. Because the 

series works only with input and output data from the 

amplifier, it is expected that any amplifier can be modeled 

accurately. The extraction of the amplitude and exponential 

complex of the phase was performed to be able to work 

with them in isolation both in the new series and in the 

previous one. From distinct behaviors and ten truncations 

previously defined in subdivisions for polynomials and 

memories, the new series was able to generate more 

combinations of truncations with more accurate 

coefficients and NMSEs for both bands, being the best 

values for the WiFi band and the LTE band of -40.37 dB 

and -39.70 dB respectively, more efficiently modeling the 

PA. 
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