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Abstract—This paper is concerned with digital 

predistortion, aiming to linearize Power Amplifiers (PA) 

with high accuracy and low computational work. First, we 

demonstrate how PAs can be modeled with a Volterra-based 

series and then how the PA response inverse function (𝒇−𝟏) 

can help with linearization. After that, we establish and test 

our 𝒇−𝟏  with memory and memoryless polynomials. The 

experimental results demonstrate that we can predict 

inverse functions accurately with both proposed approaches 

if we maintain the condition that the nonlinearities of the 

function are invertible.  

Index terms- Digital predistortion, linearization, power 

amplifier, memory polynomial. 

I. INTRODUCTION 

With the evolution of mobile communication, 

improving energy efficiency in the field is becoming 

increasingly important [1]. Wireless transmission requires 

wide bandwidth over a wide signal dynamic range and, in 

order to achieve signal transmission and high efficiency, 

RF power amplifiers (PAs) operate in their nonlinear 

region, causing amplitude and phase distortions [2].  

A commonly used approach to deal with this problem 

and correct errors caused by it is to use a digital pre-

distorter (DPD) that can compensate the net effect of the 

nonlinear behavior by obtaining the PA response curve 

inverse function (𝑓−1). Here we present a mathematical 

model that can approximate 𝑓−1  through a one-to-one 

mapping method, which means that the nonlinearities of 

the function are invertible and where the output is an 

explicit function of the input in the same instant [3]. Since 

the model used in this article is a polynomial function, our 

objectives are to investigate the necessary conditions for 

guaranteeing one-to-one mapping in polynomial inverse 

functions, approximating 𝑓−1s with mathematical models, 

and applying these learned concepts in (DPD).  

The paper is structured as follows: in Section II we 

review our mathematical model using a memory 

polynomial, then in Section III we analyze the concept of 
DPD. In Section IV, we explain the necessary conditions 

for obtaining 𝑓−1 in a polynomial without memory 

followed by Section V where we do the same with a 

memory-polynomial. Then, we report our simulation 

results in Section VI and finally present our conclusions in 

Section VII. 

II. MEMORY POLYNOMIAL MODEL FOR PAS 

In order to mathematically model our PA, we will be 

using the black box method [4], where we assess a system 

solely from the outside and are concerned only by its 

input/output behavior. 

This approach is generally used when we have little to 

no knowledge of the PA internal circuit and, even though 

its accuracy is sensible to the model structure, it presents 

less computational complexity which is key for successful 

DPD. Among the options to model nonlinear PAs, the 

Volterra series stands out as a lightweight algorithm. It can 

be described as a linear function of its parameters, which 

means we can use simple techniques such as multiple 

regression to extract our output. 

In a discrete Volterra series [5], to estimate the dynamic 

consequences of our response curve, the output at instant 

ỹ(𝑛)  depends on input 𝑥̃(n) and past inputs 𝑥̃(n − m) 

where 𝑚 ≥ 0. This means that each input at any instant 

affects future outputs, but the influence it exercises on the 

output diminishes over time. Because of this, we generally 

limit the number of past input samples with an arbitrary 

variable called M. Moreover, to estimate the nonlinear 

outcome, the Volterra series output is described as a 

polynomial function of its inputs where the order of the 

function can be limited at P. An alternative to simplify the 

Volterra series is to use its particular instance called 

memory polynomial (MP) [6], which only keeps the terms 

involving inputs taken at a single sample. The MP is then 

described by the following equation: 

𝑦̃(𝑛) = ∑  𝑃
𝑝=1 ∑ 𝑏2𝑝−1,𝑚

𝑀

𝑚=0
|𝑥(𝑛 − 𝑚)|2𝑝−2  𝑥(𝑛 − 𝑚) ( 1) 

where 𝑏2𝑝−1,𝑚  are complex coefficients and each one 

represents a different value. Observe that the accuracy of a 

memory polynomial is strongly tied with M and P values. 
The higher the values of these parameters, the greater the 

accuracy of the results. However, we need to be aware that 



the number of coefficients grows exponentially, which can 

result in ill-conditioning of the regression matrix, making 

our estimate results unreliable. 

III. PREDISTORTION ANALYSIS 

In Section II, we’ve established a model for a PA that 

depends on a previously collected dataset to predict new 

output. Furthermore, in order to tweak our predicted 

results, all we need to do is empirically test P and M 

parameters and find which value can have the best results 

with the lowest computational work. In this section, we 

discuss how we can use the inverse function of the PA 

response curve to correct nonlinear behavior as a method 

of DPD.  

Two major blocks are present in a DPD system as 

shown in Figure 2. The DPD block applies the inverse 

function to our electric input u(n). The PA block computes 

the result x(n) of the previous operation, resulting in y(n). 

With this system, we can have an idea of how to arrange 

the DPD, and PA equipment in the physical layer of a 

project. 

 

 

 

  DPD block diagram 

After modeling the amplifier response curve and getting 

its inverse function, we can linearize the PA output by 

modifying the input of our system with 𝑓−1. The result of 

this operation happens to shape our original u(n) in a 

contrary direction, compensating for the PAs distortion. 

The more accurate our model is, the better y(n) will be able 

to maintain its original information. Figure 3 illustrates the 

necessity of the inverse function in our system. 

 

  DPD, PA, and linear response characteristic 

function 

The inverse function present in the pre-distorter, in 

essence, consists of exchanging input and output roles in 

our model. This means that we can parametrize a response 

curve utilizing a memory polynomial, linear regression, 

and, after that, exchange its x and y, which will have us 

ending up with 𝑓−1.  

IV. MEMORYLESS AND NONLINEAR RESPONSE 

INVERSION THEORY 

In this section, we analyze how to guarantee a one-to-

one mapping of an inverse function for our PA model.   

Firstly, we must have in mind that the necessary 

conditions for an 𝑓−1  to exist is that, in the range of 

interest, the original 𝑓 has to be injective, meaning that one 

element of its input must correspond with a unique element 

of its output. In our case, since 𝑓 will be represented by a 

polynomial of complex coefficients, the objective is not to 

find a perfect inverse function, but to try approximating 

optimal coefficients for any value of P, the parameter that 

dictates the order of our equation. 

 

  Generic comparison between desired inverse 

function and modeled response. 

In Figure 3, we can see that the better our curve fits the 

desired inverse function, the closer we get to a one-to-one 

mapping. However, the higher the value of our input, the 

more unwanted nonlinear behavior we get, which degrades 

de approximation of  𝑓−1. Therefore, it should be noted 

that we only have a valid inverse function as long as the 

rate of change of our direct response is greater than zero 

(
𝑑𝑦

𝑑𝑥
> 0) . Furthermore, since we’re dealing with a 

memoryless system, we need to emphasize that the above 

condition is valid for any instant, in other words, our input 

is only allowed to go up to a certain limit, or else it won’t 

correspond to reality. 

V. MEMORY POLYNOMIAL INVERSION THEORY 

In Section IV, we’ve established that an inverse 

function without memory can be modeled until we reach a 

unique threshold in our input. In a memory polynomial, 

however, we need to treat our values beforehand to make 

sure they correspond with the original function. 

A method for confirming the existence of a one-to-one 

mapping in our predicted inverse function consists in 

replacing past values with known ones. In an MP, this 

means substituting our previous samples at n-m (m = 1,2, 

..., M) with a previously collected dataset. The following 

equation summarizes this change for the case M=1: 

𝑥(𝑛) 

𝑢(𝑛) 𝑢(𝑛) 

𝑦(𝑛) 

𝑥(𝑛) 

𝑦(𝑛) 

= 

DPD Response PA Response Linear Response 

Digital pre-distorter 

𝑓−1(𝑢(𝑛)) 

 PA 
𝑓(𝑥(𝑛)) 

𝑢(𝑛) 𝑥(𝑛) 𝑦(𝑛) 



𝑜𝑢𝑡̃(𝑖) = ∑  

𝑃

𝑝=1

𝑏𝑝,0|𝑖𝑛(𝑖)|2𝑝−2  𝑖𝑛(𝑖)

+  𝑏𝑝,1|𝑒𝑥𝑡̃(𝑛 − 1)|2𝑝−2  𝑒𝑥𝑡̃(𝑛 − 1)     ( 2) 

In the coefficients 𝑏𝑝,𝑛, each one represents a different 

value. They solely depend on the order of the function and 

n, which is the instant we’re validating. 𝑒𝑥𝑡̃(𝑛) represents 

our extracted inputs from real PA measures and, therefore, 

they’re known values. Our input 𝑖𝑛(𝑖) is a list of a hundred 

evenly spaced inputs starting at 0 and going until we reach 
|𝑒𝑥𝑡̃(𝑛)| . This equation will result in a different 

memoryless polynomial response for each instant n 

because the value of 𝑒𝑥𝑡̃(𝑛) changes through each 

iteration. As a consequence, we must test every single 

instant in our extracted dataset in order to evaluate a one-

to-one mapping to our inverse function. 

By modeling the equation, we can now assess if a 

specific instant is valid in our inverse function when we 

compare an 𝑜𝑢𝑡̃(𝑖) that has a rate of change of zero or less 

(
𝑑𝑦

𝑑𝑥
< 0) with |𝑒𝑥𝑡̃(𝑛)|. If the module of our extraction is 

greater than our output value, then the instant won’t be 

compatible with our inverse function. See how |𝑒𝑥𝑡̃(𝑛)| is 

now our threshold, and its value changes depending on the 

instant we are testing. As a consequence, each instant 

should be assessed individually, and, if one sample fails to 

be satisfied, we can already claim that our function does 

not respect one-to-one mapping. 

VI. SIMULATION RESULTS 

In this section, we will overview how we were able to 

simulate DPD in both memoryless and memory instances. 

For that, we will first describe our tools and detail our 

experimental data and then apply the principles explained 

in Sections IV and V, validating our methods with two 

datasets: one that has a one-to-one mapping and another 

that doesn’t. 

 The proposed PA model has been implemented in 

Python with the libraries NumPy, for floating point double 

precision in matrix calculation and to apply the least 

squares method; Matplotlib for chart creation and 

visualization and SciPy to load a previously measured PA 

dataset. To calculate the response rate of change for both 

methods described in Sections IV and V, we simply 

compared the current output with the previous one. The 

derivative then would be equal to or less than zero as 

increasing input reduced output. We used a NumPy method 

to create a vector with a hundred evenly spaced values as 

described in Section V. We used the method’s standard 

precision, float64, to assess our results. 

To obtain the outcome presented in our simulations, it 

was utilized a PA manufactured with gallium nitride (GaN) 

technology, operating in class AB and excited by a carrier 

at a frequency of 900 MHz, modulated by a 3GPP 
WCDMA signal with 3.84 MHz of bandwidth [7]. The 

input and output data collected were measured using a 

Rohde & Schwarz FSQ VSA vector signal analyzer, with a 

61.44 MHz sampling frequency. The data was divided into 

an extraction set and a validation set. The extraction one 

has 3,221 samples and the validation set has 2,001 samples. 

A. Case study analysis without memory 

For the validation of the memoryless instance, firstly it 

was created a polynomial using an MP with parameters 

P=2 and M=0 by applying the equation in our PA measured 

data. It generated the following coefficients: 

[𝑏1,0 = 0.960 − 0.016𝑗; 𝑏3,0 = −0.108 + 0.027𝑗] 

After that, in order to generate two samples for our 

experiment, we applied the same input extracted previously 

from a real PA with different gains in the regression matrix 

and got two different response curves. One with gain=1 and 

the other with gain=1.5. This part must be done so we can 

see one of the charts with perfect one-to-one mapping and 

the other failing to model the PA inverse. The method 

utilized here to validate one-to-one mapping is the same as 

described in Section IV. Consequently, by analyzing both 

response charts and their derivatives, we can conclude that 

the input limit established by the rate of change of the graph 

with gain=1 is its own maximum value of 1.45 𝑉 , and 

gain=1.5 is, approximately,  1.15 𝑉.  

 

 Inverse response with a one-to-one mapping 

 

 Memoryless inverse response without one-to-one 

mapping. 

After setting up our polynomials, we can now exchange 

their output and input values and create our ideal inverse 

response curves. With that done, we have now a new set of 
inputs and outputs that can be modelled by using equation 

(2) in Section IV. In our experiment, by testing the 



parameter values of P=2, 4, 7, and 10, the one that had the 

best accuracy/computational work ratio was P=7. Both 

inverse response charts can be seen in Figures 4 and 5: 

In both charts, the modeled response is represented by 

red dots and the original inverse function by black dots. In 

Figure 4, where we had one-to-one mapping, we can 

clearly see that our model was accurate in predicting output 

values since we can barely see any black dots on the chart. 

On the other hand, in Figure 5, with no one-to-one 

mapping, the black region was poorly modeled and we 

can’t predict anything above our limit input of 1.15 V. 

B. Case study analysis with memory 

In a similar way to Subsection VI.A, we first create a 

polynomial with our previously measured data with the 

parameters P=2 and M=1. It generates the following 

coefficients: 

[ 𝑏1,0 = 1.099 + 0.103𝑗 𝑏1,1 = −0.166 − 0.128𝑗  

𝑏3,0 =  −0.317 − 0.019𝑗;  𝑏3,1 =  0.240 + 0.054𝑗 ] 

In order to validate what was discussed in Section V, 

we apply in our polynomial the same input, but with 

gain=0.65, chosen because it has a one-to-one mapping, 

and gain=1.5, without mapping. We verify each instant of 

both response curves by creating an array of a hundred 

values going from 0 to |𝑒𝑥𝑡̃(𝑛)| as mentioned previously. 

By doing that, we can verify how many samples do not 

meet the established criteria and determine whether they 

are accurate to the inverse function or not. The first 

response curve with a 0.65 gain provided the following 

outcome in Figure 6. 

 

 Memory polynomial response with gain = 0.65 

All tested instants were able to match the criteria. The 

second curve with a 1.5 gain, unlike the first, gave a much 

more inaccurate end result in Figure 7.  

When modeling the inverse function for both gains, we 

also experimented with P and M values in order to 

determine the best accuracy/computational work ratio. In 

this case, P=5 and M=5 were the best combinations of 

values, as shown in Figures 6 and 7. In Figure 6 we can see 

that we can predict the output function accurately with the 

red dots, unlike in Figure 7, where all the black dots 
correspond to the number of instants that do not meet the 

criteria for one-to-one mapping. With that, it’s clear that 

without a previous established one-to-one mapping our 

prediction methods become less accurate, even with high 

computational work. 

 

 Memory polynomial response with gain = 1.5 

In this instance, 1,130 of 3,221 instants failed the 

criteria, meaning that 35% of our output is inaccurate.  

VII. CONCLUSION 

In this paper, it was established and tested four ways of 

handling a MP inverse function, by assessing memory and 

one-to-one mapping. We’ve concluded that the 𝑓−1𝑠 could 

be accurately predicted when we had a previous established 

one-to-one mapping with both memory and memoryless 

polynomials. On the other hand, when we detach the 

invertibility of our 𝑓−1𝑠  by changing the gain of the 

datasets, our results become a lot more inaccurate. 
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