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Batteryless Internet of Things, powered by wireless en-
ergy transfer (WET) from dedicated power beacons (PBs),
has emerged as a promising approach to eliminate the
need for frequent battery replacements and maintenance.
This paper compares statistical channel state informa-
tion (SCSI), space-division multiple access (SDMA)-based
SCSI, and the omnidirectional switching antenna (SA)
WET techniques. We define an optimization algorithm to
minimize the energy consumption of the PB while meet-
ing reliability and latency constraints under realistic Ri-
cian fading channel models. Results reveal optimal charg-
ing times for each strategy. While the SDMA approach
leverages multiple antennas to enhance energy delivery ef-
ficiency in dense environments, the SA technique offers a
simpler, yet efficient solution for dense deployments.

I. INTRODUCTION
The proliferation of the Internet of Things (IoT), in the

context of 5G and future 6G networks, has been pivotal in
the advancement of scalable and reliable communications for
a wide range of connected devices. The growing demand
for sustainable IoT solutions has called for the development
of batteryless devices that operate without frequent mainte-
nance or battery replacements. To this end, wireless energy
transfer (WET) has emerged as a compelling solution to sus-
tain low-power devices, supporting maintenance-free opera-
tions and extending devices lifetime [1, 2].

WET technologies relying on radio frequency (RF) have
been extensively explored as a means to power batteryless
IoT devices. The deployment of power beacons (PBs) en-
ables both direct powering of sensors and energy storage for
future use. However, efficient WET in such networks often
hinges on the availability of accurate channel state informa-
tion (CSI), which facilitates optimized energy beamforming
and maximizes energy delivery to intended devices.

The literature on WET has predominantly focused on tech-
niques that assume perfect or near-perfect CSI, such as full
CSI (FCSI) strategies, which enable precise beamforming
towards specific devices. These techniques maximize en-
ergy transfer efficiency by accurately directing energy beams,
but the assumption of instantaneous and perfect CSI avail-
ability is often impractical due to the significant overhead
and energy consumption required for channel estimation and
feedback [1]. To address these challenges, more practical
approaches have been developed, including statistical CSI

(SCSI) techniques, which leverage average channel knowl-
edge to design beamforming patterns that reduce the need for
real-time channel estimation [3]. SCSI-based strategies offer
a compromise between performance and complexity, espe-
cially as the number of devices increases and instantaneous
CSI estimation becomes infeasible [4].

Furthermore, other studies have explored non-
beamforming strategies, such as the switching antenna
(SA) and all antennas active (AA) techniques, which do
not depend on instantaneous CSI. The SA method, which
involves sequentially switching between antennas with
each transmitting at full power, has been shown to provide
more predictable energy delivery [5]. In contrast, the AA
technique, which transmits from all antennas simultaneously,
suffers from high variance in energy delivery under non-
line-of-sight (NLOS) conditions, limiting its effectiveness in
unpredictable environments [6].

Building on the above, and assuming that FCSI is infea-
sible, this work provides an analysis of the performance and
trade-offs between SCSI, SCSI combined with space divi-
sion multiple access (SDMA), and SA strategies for WET
in dense IoT networks. The SDMA approach, which parti-
tions antennas into groups to simultaneously serve subsets of
devices, represents a promising middle ground between the
simplicity of non-beamforming methods and the efficiency
of beamforming approaches [6]. To address existing litera-
ture gaps, we evaluate SCSI, SDMA, and SA strategies un-
der varying network parameters, such as the number of IoT
devices, the average distance of the devices to the PB, and
the transmit power of the PB.

II. SYSTEM MODEL
Figure 1 illustrates a PB, equipped with a uniform linear

array of M antennas, charging D IoT devices via RF, each
indexed by i ∈ [1, D]. The IoT devices are batteryless and
equipped with single rectennas to harvest power from the PB.
Once powered, these devices transmit their collected data to
the destination node, which processes the data for further use.
We consider the IoT devices randomly spread around the PB
within a circle of radius Rwet, following a uniform distribu-
tion, with a minimum radius of 1 m around the PB.

Adopting the PB position as the reference and θi as the
angle formed between the PB and a device i, the coordi-
nate of the device is (xi, yi) = (di,wet cos θi, di,wet sin θi),
where di,wet is the distance between the PB and the i-th
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Figure 1: Multi-antenna PB powering multiple IoT devices,
which send data to a destination node. The distances between
the PB and IoT devices are denoted as di,wet, while from each
IoT device to the destination are denoted as di,wit.

device. The distance between the PB and the destination
node is dwit, while the i-th device is at distance di,wit =√
d2i,wet + d2wit − 2di,wetdwit cos θi from the destination.

A. Channel Models

The WET link with respect to the i-th device is characterized
by a Rician fading channel

hi =
√
βi,wet(hi,LOS + hi,NLOS) ∈ CM×1. (1)

The deterministic LOS component is given by

hi,LOS =

√
κwet

1 + κwet
ejφ0,i [1, ejψ1,i , . . . , ejψM−1,i ]T , (2)

where [·]T is the transpose operation, κwet is the line-of-
sight (LOS) factor, φ0,i is the initial phase shift of the first
antenna with respect to the i-th device, and ψm,i, m ∈
{1, . . . ,M − 1}, is the mean phase shift of the (m + 1)-
th array element with respect to the first. It is assumed that
the antenna elements are equally spaced at a half-wavelength
distance so that ψm,i = −mπ sin θi. The NLOS component
is

hi,NLOS ∼
√

1

1 + κwet
CN (0,R), (3)

where CN (0,R) is a circularly-symmetric complex Gaus-
sian vector with zero-mean and covariance R = 1

1+kwet
I [7].

The average power gain in the WET link is given by

βi,wet =
c2

16π2f2wetd
αwet
i,wet

, (4)

where c is the speed of light, fwet is the WET frequency, and
αwet is the path-loss exponent for the WET link.

Wireless Information Transfer (WIT) refers to the trans-
mission of data over wireless channels. The WIT link be-
tween the i-th IoT device and the destination is also modeled
as a Rician fading channel

zi =
√
βi,wit(zi,LOS + zi,NLOS) ∈ C, (5)

where zi,LOS =
√

κwit

1+κwit
ejϕi , with LOS factor κwit and ϕi

being the phase shift, while zi,NLOS =
√

1
1+κwit

CN (0, 1).
Moreover, the average power gain in the WIT link, βi,wit can
be obtained from (4) replacing the subscripts wet by wit.

B. Transceiver Model

In the IoT device circuitry, the power usage of low-power
transceivers is typically represented as a function that in-
cludes the drain efficiency η of the power amplifier (PA) and
a constant power consumption Pcirc related to other compo-
nents within the transceiver circuit. The transmit power Pi is
the effective power that the i-th device uses to transmit data
through the WIT link to the destination node, given by:

Pi,b = min
{[
η (Pi,b,harv − Pcirc)

]+
, Pmax

}
, (6)

where [x]+ = max{0, x}, and Pi,b,harv is the total power
harvested by the rectenna of the i-th device, which depends
on the WET scheme b ∈ {SA,SCSI,SDMA}, assuming that
all of the harvested power is used by the transceiver. Notice
that (6) only holds when Pi,b,harv > Pcirc; furthermore, the
transceiver has a maximum transmission power Pmax.

C. Outage Probability

An outage occurs when γi, the signal-to-noise ratio (SNR)
at the destination given a transmission from device i, falls
below a certain threshold γ0,i, resulting in failure to decode
the data. Assuming the Shannon limit, then γ0,i = 2Ri − 1,
where Ri is the normalized transmission rate, given by:

Ri =
N

B Ti
, (7)

with N being the number of bits transmitted to the destina-
tion node, B being the bandwidth of the WIT link, and Ti
being the transmission time of the i-th device. The SNR for
a given device, in its turn, is given by

γi =
Pi βi,wit |zi|2

Nf N0B
, (8)

where Nf is the noise figure and N0 is the noise power spec-
tral density. Hence, the outage probability can be written as:

Oi = P{γi < γ0,i} = P
{
|zi|2 <

(2Ri − 1)NfN0B

Pi βi,wit

}
.

(9)

III. WET MODELS
The RF power the i-th device can harvest, Pb,i, is deter-

mined by the WET technique used by the PB and the channel
conditions, as

Pb,i = |wH
i,b hi|2, (10)



where wi,b, b ∈ {SA,SCSI,SDMA} is the WET precoder,
and (·)H denotes the Hermitian transpose.

In addition, the DC power harvested by the i-th device fol-
lows a practical non-linear model defined as [2]

G(Pb,i) =
(1− e−c0Pb,i)W
1 + e−c0(Pb,i−c1)

, (11)

where W is the saturation level, and c0 and c1 are unitless
constants to fit the rectenna characteristics.

A. Switching Antenna (SA)

In SA, the PB transmits without beamforming and, conse-
quently, without using any CSI [5]. Then, the total charging
time is the time until all D devices are charged enough to
ensure transmission with outage probability O⋆, i.e.,

τSA = max
i

Ti. (12)

The transmission is done with full power by one antenna
at a time, and all antennas are used during a block. Thus,
each m-th PB antenna, m ∈ [1, . . . ,M ], provides Pi,m,SA =
βi,wet ΓP |hi,m|2 [5], where hi,m represents the m-th ele-
ment of hi and ΓP is the transmit power of the PB. At the
i-th device, the power harvested from the m-th antenna is
G(Pi,m,SA). Assuming equal-time allocation for each an-
tenna, the total power harvested by the i-th device is

Pi,SA,harv =
1

M

M∑
m=1

G(βi,wetΓP|hi,m|2). (13)

Finally, the transmit power of the i-th device, Pi,SA, is
given by (6) using (13).

B. SCSI Beamforming

With SCSI, the PB uses statistical information to perform
beamforming towards one device at a time, time multiplexing
to serve multiple devices. The total charging time is

τSCSI =
D∑
i=1

Ti. (14)

The precoder for SCSI is wi,SCSI =
√
ΓP

hi,LOS

||hi,LOS|| , which
substituted into (10) with a few algebraic manipulations
yields [7]

Pi,SCSI = βi,wetΓP

∣∣∣∣∣||hi,LOS||+
hHi,LOS hi,NLOS

||hi,LOS||

∣∣∣∣∣
2

. (15)

With SCSI only, hi,NLOS is unknown at the PB, representing
an uncertainty in the beamforming design. Thus, SCSI per-
forms better when the LOS component is dominant in (15).

The power harvested by the i-th device is Pi,SCSI,harv =
G(Pi,SCSI), so the transmit power Pi,SCSI follows from (6).

C. SDMA-Based SCSI Beamforming

The SDMA technique enables simultaneous energy trans-
fer to multiple devices by creating individual energy beams.
Thus, the system can potentially overcome the limitations of
time multiplexing and offer a more efficient WET solution in
dense scenarios. The PB antennas are divided into G groups,
so the number of antennas in each group g ∈ {1, 2, . . . , G}
is M

G . The total charging time with SDMA becomes

τSDMA =

G∑
g=1

max
i∈g

Ti. (16)

Then, only a subset of the channel vector hi is used for
each group, so that we denote the channel subset vectors by
bi,LOS and bi,NLOS, each containing M

G elements of hi,LOS

and hi,NLOS, respectively. Therefore, the SDMA precoder
is equivalent to the SCSI precoder, with the proper channel
subset substitutions,

Pi,SDMA = βi,wetΓP

∣∣∣∣∣||bi,LOS||+
bHi,LOSbi,NLOS

||bi,LOS||

∣∣∣∣∣
2

,

(17)
with transmit power Pi,SDMA coming from (6) using
G(Pi,SDMA).

D. Problem Formulation

Our goal is to minimize the energy consumption at the PB,
while efficiently charging D IoT devices, which must trans-
mit data to a destination given a target outage probability O⋆.
The energy consumption of the PB is given byE = ΓPτb, for
b ∈ {SA,SCSI,SDMA}. Since ΓP is fixed, this optimiza-
tion problem can be written as

τ⋆b = minimize
τb

E = ΓPτb (18a)

s.t. Oi = O⋆, ∀i ∈ D (18b)
τb ≤ τmax, (18c)
Ri ≤ Rmax, ∀i ∈ D (18d)

in which (18b) denotes a set of constraints in order to satisfy
a target outage probability O⋆ for each i-th device. Also, a
maximal charging time and a maximal transmission rate per
device are imposed by conditions (18c) and (18d).

IV. RESULTS
In this section, we compare the SDMA-based beamform-

ing technique with SCSI and SA. We assume that W = 10.73
mW, c0 = 0.2308, c1 = 5.365, η = 33%, Pcirc = 1.33 mW
and Pmax = 3.3 dBm. In addition, M = 24, dwit = 100 m,
κwet = 4 dB, κwit = 2 dB, αwet = αwit = 3, fwet = 915
MHz, fwit = 2.45 GHz, Nf = 10 dBm, N0 = −204 dB/Hz,
N = 23 bytes, and B = 100 kHz. Furthermore, for the opti-
mization O⋆ = 10−3, τmax = 1 s, and Rmax = 8 bps/Hz.

Figure 2 shows the optimal charging time τ⋆b , with G ∈
{2, 3} groups for SDMA, as a function of the number of IoT
devices D. We observe that the SA technique remains con-
stant regardless of the number of users, once the WET is om-
nidirectional and τ⋆SA is the time until all devices have enough
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Figure 2: Optimal charging time (τ⋆b ) vs. number of devices
(D) for SA, SCSI, and SDMA withG ∈ {2, 3}, ΓP = 53 dBm
and Rwet = 3.5 m.
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Figure 3: τ⋆b vs. Rwet with D = 6 devices.

energy to transmit. Also, τ⋆SCSI and τ⋆SDMA increase with D
and outperform SA when D is small. For instance, SDMA
with G = 3 outperforms the other schemes when D ≤ 9.
On the other hand, the SA technique becomes more advan-
tageous when the number of devices increases significantly.
Let us remark that with Rwet = 3 m the device density with
D = 24 is of D/(πR2

wet) ≈ 0.85 devices/m2.
Figure 3 plots τ⋆b as a function of Rwet. In the left fig-

ure, with ΓP = 53 dBm, the performance of SA significantly
drops when Rwet > 3 m, while SCSI and SDMA can extend
the charging radius for a few meters. In addition, the right
figure increases ΓP to 60 dBm, in which we observe that all
techniques benefit from this increase, but with SDMA being
able to further extend the charging radius, with reduced en-
ergy consumption compared to SCSI.

Figure 4 shows the impact of ΓP on τ⋆b with D = 6 de-
vices. As ΓP increases, all techniques show a decrease in τ⋆b
up to a saturation point of minimal charging time. On the
other hand, if ΓP is too low, τ⋆b tends to infinity. Further-
more, we also observe that for SA to be efficient, the power
level must be considerably increased, while SDMA offers an
important trade-off in performance.

V. CONCLUSION
This paper explores a batteryless IoT system powered by

WET from a dedicated PB, comparing SCSI, SDMA, and
SA beamforming in different environments. An optimization
algorithm minimizes PB energy consumption while meet-
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Figure 4: τ⋆b vs. ΓP with Rwet = 6 m.

ing WIT reliability. Results show optimal charging times
for each WET strategy, with SDMA performing best in less
dense networks and SA excelling in very dense ones due to
its simplicity and lack of CSI requirements.
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