
A Simulation-based Python EDA
Tool for Customized Digital Cell

Design

R. Journois1,2, L. Compassi-Severo1, O. Saotome1
1Aeronautics Institute of Technology, São José dos Campos, Brazil

2CentraleSupélec, Gif-sur-Yvette, France
{robinson, severolcs, osaotome}@ita.br

Abstract - With the increase of computation capability,
new optimisation methods are becoming accessible. As
transistor size reduction is less and less effective and more
complex with each process node, digital design needs to get
more efficient. One way to do that would be to use analog
design methods. Previous works have presented ways to au-
tomatise analog circuit design and allow automatic explo-
ration of high dimensional parameter space. Digital cells
have to follow certain restrictions on shape and size in or-
der to be properly integrated in large-scale circuit. The use
of automation with digital cell design will allow the creation
of custom libraries and circuits faster, reduce area and as
such, cost. This work presents a Python script which links
minimisation methods, circuit simulation, behaviour anal-
ysis and digital cells constraints to allow netlist level param-
eter optimisation.

I. INTRODUCTION
Recent years have seen the development of electronic de-

sign automation (EDA) tools focused on analog integrated
circuit (IC) design with the help of deterministic and heuris-
tic optimisation algorithms. Rao et al. have used a mix of
genetic algorithm and simulated annealing on the design of a
voltage-controlled oscillator [1], White et al. showcase an in-
verter and buffer design optimisation with particle swarm [2]
and Martins et al. have built a full-fledged design automation
software, AIDA [3].

As Moore’s law is becoming a marketing ploy rather than
the transistor size reduction indicator it once was [4], im-
provements in digital circuits efficiency will increasingly
stem from better design paradigms, both in terms of inter-
cell routing and cell design. Digital cells usually come from
libraries which are built for generic use cases. However, cus-
tom ICs can have specific requirements on power, voltage,
frequency or radiation shielding, which requires specific cells
that can be quite different from the usual libraries. Build-
ing a cell library requires specialised knowledge and as such,
is time-consuming and costly. The use of tools that adapt
analog design methods to fine-tune cells to their specific use
case might make digital circuits better with only a few ad-
ditional design steps. Moreover, with the improvement of
computing capabilities, algorithm flow analysis, and notably
with stochastic processes, the use of routing algorithms al-
lows non-standardised cells and large-scale system optimi-
sation. As such, the use of automatic cell generation might
enable digital designs that are more area-efficient and better

Fig. 1: Schematic of a CMOS inverter layout with a height of
7 metal tracks.

adapted to their use case.
This work introduces a Python-based framework to opti-

mise the parameters of integrated circuit cells. The proposed
framework is demonstrated with the design of inverter cells
using a CMOS 65 nm process with different cell heights in
number of metal tracks and target specification for optimisa-
tion.

II. METHODOLOGY
In order to build an efficient optimiser, one has to ponder

on several issues. Before even thinking about the structure of
the program, it is necessary to define the optimisation’s ob-
jectives and constraints on the parameters, how to incorporate
this in the cost function, how to evaluate it, and choose the
right optimisation method. After explaining this, this section
tackles the program in itself, the programming philosophy
and the structure of the script along with an example.

A. Constraints and objectives

When optimising a system, one has to define the objectives
and constraints. Constraints can be imperative, meaning that
no solution will exist without satisfying them, or suggestive,
meaning that solutions will try to get as close as possible to
respecting them but might generate solutions that do not. In
our case, imperative constraints will be voltage and spatial
dimensions. Suggestive constraints can also be optimisation
objectives and will be incorporated in the cost function.

Area minimising is always important for optimised design,
but all dimensions are not free. Digital standard cells usu-

Seminários de Microeletrônica do Paraná
Curitiba, Brasil

ally have a height limitation (Hcell) defined by the number of
metal tracks used for routing. Figure 1 shows an example of
CMOS inverter cell with a height of 7 metal tracks. The value
of Hcell should include the necessary space for the intercon-
nections, bulk biasing if used, NMOS and PMOS channel
width (wn and wp), as well as the distances required by the
fabrication Process Design Kit (PDK) rules. In Fig. 1, the
vertical spaces would be Btop, Bcenter and Bbottom. This means
that, depending on layout options and with wn, wp the widths
of an NMOS and a PMOS, we have an upper limit on wn+wp
for each CMOS pair. Based on that, the main constraint of
the Inverter cell design is given by:

wn +wp < Hcell −min(Btop +Bcenter +Bbottom) = Hmax (1)

This equation holds for all cells with the same topology.
Other constraints might include maximum delay, static trip
points, leaking power or even cell length - the dimension
perpendicular to transistors - as a crude pre-layout way to
evaluate the area.

B. Test bench

Test-benches used by the algorithm are such as showcased
in figure 2. As the goal is to evaluate the cell in working
conditions in order to evaluate the circuit specifications, its
outputs should be connected to some real load condition. In
our case, a CMOS inverter to represent a fanout of 1.

VDD

INn

...

IN1

OUTGate

Vin,n

...Vin,1

Out

iin

Fig. 2: Schematic of the test bench for the evaluation of a
gate’s performance.

C. Cost function evaluation

As one will have several constraints to respect and variables
to evaluate, the construction of the optimisation metric is
quite important. Trip-point equilibrium, delay and power
measurement have been implemented in Python. These eval-
uations are then congregated to obtain the scalar cost function
that the optimisation algorithm will try to minimize. Since
this function is an aggregate of aggregated simulated results,
it is not expected to be differentiable or otherwise present any
regularity.

D. Black box optimisation

Because of the possible irregularity of the cost function, the
use of differential and convex optimisation methods is not
ideal, which is why this program uses stochastic black-box
optimisation algorithms. This means that we are not able to
ensure that we have reached the best possible set of param-
eters. Hence, exploring the whole design space and avoid
convergence on local minima is important. The first imple-
mented method is a simple genetic algorithm as showcased
in [1] but future work will focus on implementing and com-
paring several other optimisation methods.

E. Building for modularity

In order to compare several optimisation methods and met-
rics and to increase reusability of the code, this program
needs to be modular. It should be possible to individu-
ally change the simulator, type of simulation and measure-
ment, type of optimisation and type of cell without having
to rewrite other things. For example, this program is built
around Cadence’s Spectre for simulation, but one might want
to use a physics simulator for some components, or a pre-
viously generated circuit behaviour look-up table, which is
feasible by providing a Python interface. It should also be
possible to use only a part of the program to run parame-
ter space exploration, run the same simulation with different
programs, or even run the simulations and the optimisation
on different computers.

F. Program Outline

The first version of the program is functional programming
based, as showcased in the following figure 3.

Fig. 3: Functional program graph, arrows: function calls in
red, inputs and outputs in green, cells: files in yellow, func-
tions in green and main loop in violet.

This generic version is the basis of our work, but we will
go into the details with the example shown in figure 4. This
graphic presents the minimisation of the delay for an inverter
cell of height Hcell through the variation of the widths of its
NMOS and PMOS transistors. The delay τ is defined as fol-
lows:

τ =
τrise + τ f all

2
(2)

where for i ∈ {rise, f all}:

τi = t|VIn=V DD/2 − t|VOut=V DD/2 (3)

The inverter is the same as in A, it is composed of NMOS
and PMOS transistors with wn and wp their width with the
relation wn +wp ≤ Hmax < Hcell , which means the only vari-
able of this problem is either wn or wp. The script calls the
optimiser by setting the name of the parameter or set of pa-
rameters to be optimised, wn in our example. During the
optimisation loop, the optimizer decides a set of parameters
describing a cell that needs to be tested, let’s say wn = wn,min
as specified by the PDK, and calls the cost function, here
delay_evaluation. In turn, the cost function calls the test-
bench builder with the cell and simulation parameters in or-
der to create the .scs netlist, in our case the cell parameters
would be wn = wn,min and wp = Hmax −wn and simulation
parameters would be its type, transient, and the final time of
the simulation. Once the test-bench builder has finished its
process, the cost function calls the simulation runner, which
uses Python’s os’s library and takes in the previously gen-
erated .scs file and outputs the results in the form of .psf
ASCII file. The parser is then called to extract the signals
for the cost function to process. In our case, it would be
the output and inputs voltages to evaluate delays. The opti-
miser runs the process again until sufficient convergence has
been reached. File interaction and directory creation are done
through a configuration file that defines the paths. A data-
holding capability is incorporated in the algorithm in order
not to run the same simulation twice. It also allows for the
plotting of graphs such as in figure 6.

III. RESULTS
The algorithm being implemented, a few things are worth

noting. This part tackles which tools the program was run
with, then discusses the importance of the simulator preci-
sion, the limits of the genetic algorithm along with an exam-
ple of what can be done with such a script.

A. Tools

This work is built with Cadence’s Spectre as a simulator but
not around it. It could be used with other simulation software,
such as a physics simulator or a cell behaviour look-up table,
though the user would have to provide the Python interface.
This simulator was chosen for its wide usage and particularly
because it is the software of choice in our team which makes
it easy to integrate in our design workflow. We built a Spec-
tre 21.1 Python interface using os library. Provided spectre
command line syntax does not change, it should work for
other versions, but the user is free to plug in another API.
The computer used for this work is a shared server with a

Fig. 4: Functional program graph for delay optimisation of
an inverter, arrows: function calls in red, inputs and outputs
in green, cells: files in yellow, functions in green and main
loop in purple.

32-core 13th gen Intel CPU and 128 GB of RAM running
Rocky Linux 8.9 for Cadence’s suit compatibility. For sim-
ple dependency management, a Python virtual environment
running Python 3.12 is used, as it is one of the latest versions
supported by the server’s distribution.

B. Simulator Precision

Since the signal processing is done in Python, the simulated
signal resolution is quite important, especially when deriva-
tives or y-value matching are involved. With the same exam-
ple as before and with the definition of the delay τ in equation
(2), getting a precise value of the time at which the signal is
at V DD

2 is quite important. The first method used was linear
interpolation between the two closest points. However, the
resulting plot is shown in figure 5. Since the delay should be
way more regular because of the simplicity of the system, we
added a simulator side interpolation of the values at a higher
number of points per signal period, which led to better re-
sults, and allowed us to perform optimisation as shown in 6.

C. Genetic Algorithm

We used scipy’s optimisation library for our optimisation
algorithm with the differential_evolution function,
which implements a genetic algorithm adapted for numeric
parameters. Staying with the same example as in the previous
sections, one can get a figure such as Fig. 6. The points that
were explored by the algorithm are in black and the minimal
value encountered is in red. As it is a stochastic algorithm,
the result obtained is not optimal, but the algorithm stops
when a sufficient number of values are found close to each
other. On the aforementioned graph, one might expect better
values in the non-explored part between 700 nm and 800 nm,

TABLE 1: Table showing the best performance and associated width for the delay, DC power and trip point equilibrium
depending on cell height as number of tracks.

Cell Height Delay DC Power Trip point at VDD/2
(× Metal Track) wn (nm) delay (ps) wn (nm) power (pW) wn (nm)
6 630 12.603 625 93.78 470
7 755 12.605 790 108.3 555
8 870 12.613 905 122.7 635
9 950 12.630 970 144.1 710
10 1140 12.653 1220 151.6 785
11 1210 12.630 1340 165.3 860

Fig. 5: Delay sweep across wn, wp = Hmax −wn with only
Python level linear interpolation.

but the algorithm stopping condition was reached. This is
why the combination of global exploration methods such as
genetic algorithms with local exploration such as simulated
annealing is quite interesting as shown in [1].

Fig. 6: Cost function value for a delay minimisation

D. Comparing Cell heights

As an example of the capabilities of the algorithm, Table 1
presents for different cost functions, the best parameter and
simulated result for different cell heights with the same volt-
age. If cell height has a noticeable influence on DC power
consumption, one might notice that delays do not change
much, to the point that the variations might come from the
aforementioned optimising algorithm uncertainties. If for
smaller cells, optimal wn for DC power and delay are some-
what close, it is always quite distinct from the value needed

for DC trip-point equilibrium.

IV. CONCLUSION
This work presents a method to automate netlist level cir-

cuit dimensioning with criteria such as delay, DC power and
behaviour and circuit dimensions as optimisation objectives.
The program structure can be reused to build a simple cell
library and explore circuit parameters space.

With it, we studied the variations of the best parameters of
an inverter cell across several cell heights.

The use of the Python language, way more accessible than
Cadence’s SKILL language, makes it easier to use for new
Cadence users. It allows for easier combination with other
simulators, and facilitates the integration of various optimi-
sation methods.

Future work includes integrating other cells, automatically
generating the layout, and integrating post-layout simulation
into the optimisation process.

Acknowledgments
This work was carried out with the partial support of the

Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico (CNPq) with process numbers 132114/2023-2 and
420693/2023-8.

REFERENCES
References

[1] V. V. Rao and I. Savidis, “Multi-Objective Simulation-
based Optimization of Analog Transistor Sizing,”
Mar. 17, 2020.

[2] L. White, L. While, B. Deeks, and F. Boussaid, “Tran-
sistor Sizing Using Particle Swarm Optimisation,” in
2015 IEEE Symposium Series on Computational Intel-
ligence, Dec. 2015.

[3] R. Martins, R. Lourenço, A. Canelas, R. Póvoa, and N.
Horta, “AIDA: Robust layout-aware synthesis of analog
ICs including sizing and layout generation,” in 2015 In-
ternational Conference on Synthesis, Modeling, Analy-
sis and Simulation Methods and Applications to Circuit
Design (SMACD), Sep. 2015.

[4] “IRDS™ 2021: More Moore - IEEE IRDS™.” (),
[Online]. Available: https : / / irds . ieee .

org / editions / 2021 / more - moore (visited on
11/29/2024).

